Author Archives: Steve Breit

Introducing SEMulator3D Version 5.2


By: Daniel Sieger, Lead Engineer, SEMulator3D Geometry and Michael Hargrove, Semiconductor Process & Integration Engineer

The SEMulator3D software platform has once again been updated and improved with significantly more features, making it the industry leader in semiconductor virtual fabrication.  read more…

Tagged ,

Inside Process Technology


By Mark Lapedus

Semiconductor Engineering sat down to discuss the foundry business, memory, process technology, lithography and other topics with David Fried, chief technology officer at Coventor, a supplier of predictive modeling tools. What follows are excerpts of that conversation.

SE: Chipmakers are ramping up 16nm/14nm finFETs today, with 10nm and 7nm finFETs just around the corner. What do you see happening at these advanced nodes, particularly at 7nm?

Fried: Most people are predicting evolutionary scaling from 14nm to 10nm to 7nm. It’s doubtful that we will see anything really earth-shattering in these technologies. And so, a lot of the challenges come down to patterning. We are going to see multi-patterning schemes really take hold at more levels. For example, the fins are now based on self-aligned double patterning. People will move into self-aligned quad patterning. The gates are maybe self-aligned double. Now, they will move into self-aligned quad. So, that’s going to be a big expense, because each level is going to have multiple passes and multiple cuts.

read the full article here

Tagged , , , , , , , , , , , , , , , , , , , , ,

The Future of MEMS Sensor Design and Manufacturing

By:  Stephen Breit, VP of Engineering

I recently gave an invited talk at the IEEE Inertial Sensors 2016 symposium that discussed the future of commodity MEMS inertial sensor design and manufacturing. Inertial sensors comprise one of the fastest growing and most successful segments of the MEMS market. read more…

Multi-Beam Market Heats Up

se_logoBy Mark Lapedus

The multi-beam e-beam mask writer business is heating up, as Intel and NuFlare have separately entered the emerging market.

In one surprising move, Intel is in the process of acquiring IMS Nanofabrication, a multi-beam e-beam equipment vendor. And separately, e-beam giant NuFlare recently disclosed its new multi-beam mask writer technology.

As a result of the moves, the Intel/IMS duo and NuFlare will now race each other to bring multi-beam mask writers into the market. Still in the R&D stage, these newfangled tools promise to speed up the write times for next-generation photomasks, although there are still challenges to bring this technology into production.

read the full article here

Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

MEMS Grand Challenge Debuts

ee-timesBy R. Colin Johnson, EE Times

LAKE WALES Fla.—Simplfying and popularizing microelectromechanical system (MEMS) design is the goal of the MEMS Design Contest announced yesterday (March 16) at the conference titled Data Automation and Test in Europe (DATE 2016, March 15 to 17, Dresden, Germany). More specifically, the contest encourages chip designers to add MEMS blocks to a chip design, using tools designed for the purpose.

Sponsored by Cadence Design Systems, Coventor, X-FAB and Reutlingen University, the contest will feature a special process design kit (PDK) that the winners will use to fabricate their MEMS chip at X-Fab. If interested attend the DATE session Launch of the Worldwide MEMS Design Contest.

read the full article here

Tagged , ,

7nm Lithography Choices

se_logoBy Mark Lapedus

Chipmakers are ramping up their 16nm/14nm logic processes, with 10nm expected to move into early production later this year. Barring a major breakthrough in lithography, chipmakers are using today’s 193nm immersion and multiple patterning for both 16/14nm and 10nm.

Now, chipmakers are focusing on the lithography options for 7nm. For this, they hope to use a combination of two technologies at 7nm—extreme ultraviolet (EUV) lithography, and 193nm immersion with multi-patterning.

read the full article here

Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

What’s the Next-Gen Litho Tech? Maybe All of Them

semimd_logoBy Jeff Dorsch

The annual SPIE Advanced Lithography symposium in San Jose, Calif., hasn’t offered a clear winner in the next-generation lithography race. It’s becoming clearer, however, that 193i immersion and extreme-ultraviolet lithography will co-exist in the future, while directed self-assembly, nanoimprint lithography, and maybe even electron-beam direct-write technology will fit into the picture, too.

At the same time, plasma deposition and etching processes are assuming a greater interdependence with 193i, especially when it comes to multiple patterning, such as self-aligned double patterning, self-aligned quadruple patterning, and self-aligned octuple patterning (yes, there is such a thing!).

read the full article here

Tagged , , , , , , , , , , , , , , , ,

IEDM 2016 – December 5-7, 2016, San Francisco, CA

logoIEDM 2016 (International Electron Devices Meeting)