Blog


The Unsung Heroes of CoventorWare

By Steve Breit, Vice President Engineering

The CoventorWare 2014 release has been announced and is now available to customers. I presided over the first release of CoventorWare in 2001 and eight major releases since then with numerous updates in between. With each release, we added new capabilities, and capacity, speed, and accuracy improvements to address the ever more demanding requirements of our users. The new capabilities and performance improvements in each release are easy to talk about and receive all the glory. In this respect, CoventorWare 2014 is no different: the highlights are covered in our press release and a What’s New page elsewhere on our site; I won’t repeat them here. Instead, I want to talk about the steady improvements in the usability, robustness and quality of the software and the documentation. These improvements aren’t as glamorous as the shiny new stuff, but I believe they really matter to users. Our quality assurance team and our documentation team deserve a lot of credit for these improvements. They’re the unsung heroes of CoventorWare.
read more…

Taking a leap forward from TCAD

SemiWiki
by Pawan Fangaria

We all know that Technology Computer Aided Design (TCAD) simulations are essential in developing processes for semiconductor manufacturing. From the very nature of these simulations (involving physical structure and corresponding electrical characteristics of a transistor or device), they are predominantly finite-element based simulations with complex set of equations to be solved which require large computation, thus increasing simulation time exponentially with the size of the device. It was okay for earlier generations of semiconductor technology nodes to rely on transistor or small cell level process and characterization to develop large designs which were then verified through several build-and-test cycles through actual foundries. However, for today’s nanometer technology nodes and large, complex, high-density designs with complex transistor structures like FinFET and others which exhibit excessive variability in manufacturing, it’s clear that the same old methodology will no longer be effective. . Along with the technology, the economics of chip manufacturing and marketing has become equally pressing, needing substantial reduction in P/Q ratio and very high TAT in order take advantage of ever shrinking windows of opportunity.
read more…

Semicon West attracts the entire value chain to address 3D chip manufacturing challenges

Semicon West is one of the iconic conferences in the semiconductor industry and annually attracts the key movers and shakers who are involved with how we are going to keep Moore’s Law moving forward, among other things. It’s known rightfully so, as a ‘big iron’ show with the top manufacturing equipment companies showing off their newest machines for the major steps in the manufacture of semiconductors – wafer processing, assembly packaging and test.

It’s not all about the equipment of course, or even just manufacturing. The show has done a good job of expanding to include a wider ecosystem of companies, products and topics that impact chip design as well. So while the majority of attendees come from companies that produce chips – foundries and IDMs – as well as the supporting production services, Semicon visitors also include the fabless companies who really aren’t in the market for manufacturing equipment. read more…

New Release of Semulator3D at #semiconwest

SemiWiki,
by Paul McLellan

One of Coventor’s flagship products is SEMulator3D, and at Semicon West they announced a new version, 2014.100.

SEMulator3D is a powerful 3D semiconductor and MEMS process modeling platform. It uses highly efficient physics-driven voxel modeling technology. It models the physical effects of process steps, which is where all the current challenges are.

Combining the two-dimensional design layout with the process description gives it the capability to model the process flows and determine what will be manufactured with that combination of layout and process. The basic idea, as with all modeling, is to enable experiments to be done quickly and efficiently. Since the alternative is to actually build chips and then take measurements, which is millions of dollars of investment and months of delay, the virtual fabrication route is especially attractive. This is especially important in the early stages of process development since it can drastically shorten the whole development and ramp to volume roadmap.
read more…

Mid summer release of SEMulator3D adds more accuracy for deposition & CMP

By David M. Fried

Today we officially released SEMulator3D 2014.100. Typically, I wouldn’t be so excited about a “point release”, but this is clearly the biggest interim software release in recent SEMulator3D memory. We’ve added significant capability to an already industry-leading virtual fabrication platform. Many of the features of recent SEMulator3D releases have been focused on Etch enhancements. To complement these enhancements, we’ve stepped up the predictive accuracy of several other process models in SEMulator3D 2014.100, including Deposition and CMP.

The highlight of this release is a new Visibility-Limited Deposition model. This model dramatically improves the predictive accuracy for directional depositions, like Physical Vapor Deposition (PVD) and other plasma enhanced deposition processes. As with other process models in SEMulator3D, we’ve made this process simple to implement and calibrate using a reduced set of process parameters. The key features of this Visibility-Limited Deposition model are the “Source Sigma”, reflecting the directional distribution of the process, and the “Isotropic Ratio”, reflecting the non-visibility-limited component of the deposition process. This model enables a large variety of processes, with a wide range of results.
read more…

Coventor Brings More Accuracy & Performance into Design of MEMS Devices

by Pawan Fangaria
SemiWiki

Although MEMS devices in various forms are now found in most electronic devices, predominantly in mobile, automotive, aerospace and many other applications, their major revolution, I believe, is yet to happen. We are seeing rapid innovation in MEMS reflected by their improvements in precision, performance, size reduction, and the continuing evolution of new devices with increasing complexities. The micro level fabrication of MEMS will enable unprecedented use of these into newer and newer semiconductor based electronic devices that will revolutionize the so called IoT arena. MEMS will be essential to IoT products’ ability to connect every aspect of our life, things and happenings around us and provide us ultimate knowledge, control, security through a wide range of devices in many form factors and environments.
read more…