Process Development

The Value of Integrating Process Models with TCAD Simulation (and some tips on how to do it)

By: Shi Hao (Jacky) Huang, PhD, Semiconductor Process & Integration Engineer

Coventor January 2017 Blog Graphic

Coventor January 2017 Blog Graphic 2

 

 

 

 

Nowadays, novel semiconductor technologies have brought complex process flows to the fab.   These process flows are needed to support the manufacturing of advanced 3D semiconductor structures. It can be helpful to model process flows, and their effect on a novel device, prior to physical fabrication.

read more…

Tagged , , , , , , , , , , , , , , ,

Coventor in the News – Silicon Photonics

semimd_logo

Coventor in the News

Photonics in Silicon R&D Toward Tb/s

By Ed Korczynski, Sr. Technical Editor, Semiconductor Manufacturing & Design

imec_photonictransceiver_24mux-thumb

The client:server computing paradigm colloquially referred to as the “Cloud” results in a need for extremely efficient Cloud server hardware, and from first principles the world can save a lot of energy resources if servers run on photonics instead of electronics. Though the potential for cost-savings is well known, the challenge of developing cost-effective integrated photonics solutions remains. Today, discrete compound-semiconductor chips function as transmitters, multiplexers (MUX), and receivers of photons, while many global organizations pursue the vision of lower-cost integrated silicon (Si) photonics circuits.

Work on photonics chips—using light as logic elements in an integrated circuit—built in silicon (Si) has accelerated recently with announcements of new collaborative research and development (R&D) projects. Leti, an institute of CEA Tech, announced the launch of a European Commission Horizon 2020 “COSMICC” project to enable mass commercialization of Si-photonics-based transceivers to meet future data-transmission requirements in data centers and super computing systems.

The Leti-coordinated COSMICC project will combine CMOS electronics and Si-photonics with innovative fiber-attachment techniques to achieve 1 Tb/s data rates. These scalable solutions will provide performance improvement an order of magnitude better than current VCSELs transceivers, and the COSMICC-developed technology will address future data-transmission needs with a target cost per bit that traditional wavelength-division multiplexing (WDM) transceivers cannot meet. The project’s 11 partners from five countries are focusing on developing mid-board optical transceivers with data rates up to 2.4 Tb/s with 200 Gb/s per fiber using 12 fibers. The devices will consume less than 2 pJ/bit. and cost approximately 0.2 Euros/Gb/s.

Figure 1: Schematic of COSMICC on-board optical transceiver at 2.4 Tb/s using 50 Gbps/wavelength, 4 CWDM wavelengths per fiber, 12 fibers for transmission and 12 fibers for reception. (Source: Leti)

Figure 1: Schematic of COSMICC on-board optical transceiver at 2.4 Tb/s using 50 Gbps/wavelength, 4 CWDM wavelengths per fiber, 12 fibers for transmission and 12 fibers for reception. (Source: Leti)

A first improvement will be the introduction of a silicon-nitride (SiN) layer that will allow development of temperature-insensitive MUX/DEMUX devices for coarse WDM operation, and will serve as an intermediate wave-guiding layer for optical input/output. The partners will also evaluate capacitive modulators, slow-wave depletion modulators with 1D periodicity, and more advanced approaches. These include GeSi electro-absorption modulators with tunable Si composition and photonic crystal electro-refraction modulators to make micrometer-scale devices. In addition, a hybrid III-V on Si laser will be integrated in the SOI/SiN platform in the more advanced transmitter circuits.

Meanwhile in the United States, Coventor, Inc. is collaborating with the Massachusetts Institute of Technology (MIT) on photonics modeling. MIT is a key player in the AIM Photonics program, a federally funded, public-private partnership established to advance domestic capabilities in integrated photonic technology and strengthen high-tech U.S.-based manufacturing. Coventor will provide its SEMulator3D process modeling platform to model the effect of process variation in the development of photonic integrated components.

“Coventor’s technical expertise in predicting the manufacturability of advanced technologies is outstanding. Our joint collaboration with Coventor will help us develop new design methods for achieving high yield and high performance in integrated photonic applications,” said Professor Duane Boning of MIT. Boning is an expert at modeling non-linear effects in processing, many years after working on the semiconductor industry’s reference model for the control of chemical-mechanical planarization (CMP) processing.

—E.K.

See original article here

 

 

Tagged , , , , , , , , , ,

Semiconductor Process and Integration Engineer – South Korea

Semiconductor Process and Integration Engineer – South Korea

We are seeking a BS/MS/PhD-level engineer who has experience and expertise in semiconductor process integration and fabrication. You will work with leading semiconductor companies to implement our virtual fabrication solution for their most advanced development programs, including 10nm CMOS technology and beyond! You will collaborate with the Semiconductor Process & Integration team in the Office of the CTO, along with our highly skilled software development team, to create integration and modeling solutions for industry-critical manufacturing challenges. Our tight-knit team of creative engineers is critical in leading customers into the methodology of virtual fabrication.

This is a hands-on engineering position, requiring proficiency in full flow semiconductor process integration, as well as strong communication and presentation skills. Your title, level of responsibility, creative freedom and salary will be commensurate with your education and experience.

Location: South Korea. This position requires residency in South Korea with a substantial amount of time at customer sites in South Korea. Work is expected to be partly based at customer/partner sites. Travel is expected.

Required Qualifications:

Education: Bachelor’s degree required, Master’s degree preferred, in related fields of Electrical Engineering, Chemical Engineering, Materials Science or Applied Physics.

Experience: Semiconductor Technology and Processing education and experience is required. Relevant employment experience in the semiconductor industry is required.

Skills: Semiconductor Processing and Integration, Semiconductor Device Physics (preferred), Computer-Aided Design (CAD) and Modeling, Python scripting language, Technical Writing , Communication and Presentation.

If you are interested in this opportunity and you are authorized to work in South Korea, e-mail your cover letter and CV in English to job1826@coventor.com.

About Coventor:

Coventor, Inc. (www.coventor.com) is the global market leader in virtual fabrication solutions for semiconductor technologies and design automation solutions for microelectromechanical systems (MEMS). Coventor serves a worldwide customer base of integrated device manufacturers, independent foundries, equipment makers, and R&D organizations that develop semiconductor and MEMS technologies for consumer, automotive, aerospace, industrial, and defense uses. Coventor’s predictive modeling tools and expertise enable its customers to dramatically reduce silicon learning cycles, giving them a time-to-market advantage and reducing technology development costs. The company is headquartered in Cary, NC and has offices in Waltham, MA; Silicon Valley, CA; Tokyo, Japan; Hsinchu, Taiwan; and Paris, France.

Tagged , , , , , , , , ,

Achieving the Vision of Silicon Photonics Processing

By: Sandy Wen, MSEE, Semiconductor Process and Integration Engineer, Coventor

Silicon Photonics Test Die

Silicon Photonics Test Die

With the increasing need for faster data transfer rates, the transition from electrical to optical signaling in data processing is inevitable.   Copper cabling cannot keep up with the upcoming data center bandwidth requirements, for applications such as multimedia streaming and high performance computing.  One technology that could enable true optical communication is silicon photonics. read more…

Tagged , , , , , , , ,

Design Process Technology Co-Optimization for Manufacturability

By:   Dalong Zhao – Semiconductor Process & Integration Engineering

Yield and cost have always been critical factors for both manufacturers and designers of semiconductor products.   Meeting yield and product cost targets is a continuous challenge, due to new device structures and increasingly complex process innovations introduced to achieve improved product performance at each new technology node.  Design for manufacturability (DFM) and design process technology co-optimization (DTCO) are widely used techniques that can ensure the successful delivery of both new processes and products in semiconductor manufacturing.   In this article, we will discuss how 3D (3 dimensional) DTCO can be used to improve product yield and accelerate product delivery dates in semiconductor manufacturing. read more…

Tagged , , , , , , , , , , , , ,

Asymmetric variability issues could impact 7nm processes

By Luke Collins, Tech Design Forum

Tech Design Forum Logo

New variability issues highlighted by a massive process simulation exercise could make it more difficult than expected to achieve the performance advantages of emerging 7nm and 5nm processes.

Nano-electronics research centre imec has worked with Coventor to simulate the process variability of its 7nm BEOL fabrication processes using Coventor’s SEMulator3D virtual fabrication platform. The simulation of a full process window, looking at how multiple parameters of multiple processes interact, would have taken one million wafers to complete using conventional methods.

read the full article here

Tagged , , , , , , , , ,

Process Simulation vs. Process Emulation: is SEMulator3D really TCAD?

I was interested to note that Silvaco has recently listed SEMulator3D as a competitor for their VICTORY Process Cell software on their website. It’s great to be mentioned as a contender in the TCAD process simulation space. But I’d like to take the opportunity to examine the following question – are SEMulator3D and VICTORY Process Cell really direct competitors?

On the surface, both SEMulator3D and VICTORY Process Cell can do some similar things. Both tools are fast, layout driven process modeling engines that are designed to build 3D models of MEMS and semiconductor devices. Both tools can model individual process steps or entire process sequences, and can model a variety of process and device types. And both tools can create meshes suitable for further physics simulation.

read more…

Tagged , , , , ,