Process Integration

Semiconductor Process and Integration Engineer – Albany/Saratoga, NY

Semiconductor Process and Integration Engineer – Albany/Saratoga, NY

We are seeking a MS/PhD-level engineer who has experience and expertise in leading node semiconductor process integration and fabrication. You will work with leading semiconductor companies to implement our virtual fabrication solution for their most advanced development programs, including 10nm CMOS technology and beyond! You will collaborate with the Semiconductor Process & Integration team in the Office of the CTO and highly skilled software development team to create integration and modeling solutions for industry-critical manufacturing challenges. Our tight-knit team of creative engineers is critical in leading customers into the methodology of virtual fabrication.

This is a hands-on engineering position, requiring proficiency in full flow semiconductor process integration, as well as strong communication and presentation skills. Your title, level of responsibility, creative freedom and salary will be commensurate with your education and experience.

Location: Albany/Saratoga, NY area.  Work is expected to be partly based at customer/partner sites. Travel is expected.

Required Qualifications:

Education: Master’s degree required, PhD degree preferred, in related fields of Electrical Engineering, Chemical Engineering, Materials Science or Applied Physics.

Experience: Semiconductor Technology and Processing education and experience in leading node 14/10/7nm is preferred.

Skills:  Semiconductor Processing and Integration, Semiconductor Device Physics (preferred), self-starter able to complete projects on their own, Computer-Aided Design (CAD) and Modeling, Python scripting language, Technical Writing , Communication and Presentation.

This regular, full-time position is located in the Albany/Saratoga, NY area. Coventor offers comprehensive benefits and is an EEO/AA Employer. You must be a current legal resident of the U.S. or have a valid U.S. visa to apply for this position. If you are interested in this opportunity and you are authorized to work in the United States, e-mail your cover letter and CV in English to job1862@coventor.com.

About Coventor:

Coventor, Inc. (www.coventor.com) is the global market leader in virtual fabrication solutions for semiconductor technologies and design automation solutions for microelectromechanical systems (MEMS). Coventor serves a worldwide customer base of integrated device manufacturers, independent foundries, equipment makers, and R&D organizations that develop semiconductor and MEMS technologies for consumer, automotive, aerospace, industrial, and defense uses. Coventor’s predictive modeling tools and expertise enable its customers to dramatically reduce silicon learning cycles, giving them a time-to-market advantage and reducing technology development costs. The company is headquartered in Cary NC and has offices in Waltham MA, Silicon Valley CA, Tokyo Japan, Hsinchu Taiwan, Dongtan South Korea,  and Paris France.

Tagged , , , , , , , , ,

CMOS Image Sensors (CIS): Past, Present & Future

By: Sofiane Guissi, Semiconductor Process & Integration Engineer, Coventor

Over the last decade, CMOS Image Sensor (CIS) technology has made impressive progress. Image sensor performance has dramatically improved over the years, and CIS technology has enjoyed great commercial success since the introduction of mobile phones using on-board cameras. Many people, including scientists and marketing specialists, predicted 15 years earlier that CMOS image sensors were going to completely displace CCD imaging devices, in the same way that CCD devices displaced video capture tubes during the mid-1980’s. Although CMOS has a strong position in imaging today, it has not totally displaced CCD devices. On the other hand, the drive into CMOS technology has drastically increased the overall imaging market. CMOS image sensors have not only created new product applications, but have also boosted the performance of CCD imaging devices as well. In this paper, we describe the state-of-the-art in CMOS image sensor technology and discuss future perspectives.

read more…

Tagged , , , , , , , , , , , , , , , , , , ,

Semiconductor Process and Integration Engineer – South Korea

Semiconductor Process and Integration Engineer – South Korea

We are seeking a BS/MS/PhD-level engineer who has experience and expertise in semiconductor process integration and fabrication. You will work with leading semiconductor companies to implement our virtual fabrication solution for their most advanced development programs, including 10nm CMOS technology and beyond! You will collaborate with the Semiconductor Process & Integration team in the Office of the CTO, along with our highly skilled software development team, to create integration and modeling solutions for industry-critical manufacturing challenges. Our tight-knit team of creative engineers is critical in leading customers into the methodology of virtual fabrication.

This is a hands-on engineering position, requiring proficiency in full flow semiconductor process integration, as well as strong communication and presentation skills. Your title, level of responsibility, creative freedom and salary will be commensurate with your education and experience.

Location: South Korea. This position requires residency in South Korea with a substantial amount of time at customer sites in South Korea. Work is expected to be partly based at customer/partner sites. Travel is expected.

Required Qualifications:

Education: Bachelor’s degree required, Master’s degree preferred, in related fields of Electrical Engineering, Chemical Engineering, Materials Science or Applied Physics.

Experience: Semiconductor Technology and Processing education and experience is required. Relevant employment experience in the semiconductor industry is required.

Skills: Semiconductor Processing and Integration, Semiconductor Device Physics (preferred), Computer-Aided Design (CAD) and Modeling, Python scripting language, Technical Writing , Communication and Presentation.

If you are interested in this opportunity and you are authorized to work in South Korea, e-mail your cover letter and CV in English to job1826@coventor.com.

About Coventor:

Coventor, Inc. (www.coventor.com) is the global market leader in virtual fabrication solutions for semiconductor technologies and design automation solutions for microelectromechanical systems (MEMS). Coventor serves a worldwide customer base of integrated device manufacturers, independent foundries, equipment makers, and R&D organizations that develop semiconductor and MEMS technologies for consumer, automotive, aerospace, industrial, and defense uses. Coventor’s predictive modeling tools and expertise enable its customers to dramatically reduce silicon learning cycles, giving them a time-to-market advantage and reducing technology development costs. The company is headquartered in Cary, NC and has offices in Waltham, MA; Silicon Valley, CA; Tokyo, Japan; Hsinchu, Taiwan; and Paris, France.

Tagged , , , , , , , , ,

What drives SADP BEOL variability?

By: Michael Hargrove, Semiconductor Process & Integration Engineer

Until EUV lithography becomes a reality, multiple patterning technologies such as triple litho-etch (LELELE), self-aligned double patterning (SADP), and self-aligned quadruple patterning (SAQP) are being used to meet the stringent patterning demands of advanced back-end-of-line (BEOL) technologies.  For the 7nm technology node, patterning requirements include a metal pitch of 40nm or less. This narrow pitch requirement forces the use of spacer based pitch multiplication techniques. Unfortunately, these techniques have high process/lithography variability, which can severely impact RC and overall device performance.

read more…

Tagged , , , , , , , , , , , , , , , , , , , , , , , ,

AIM Photonics Welcomes Coventor as Newest Member

 

 

 

 

For Immediate Release: March 16, 2017

Contact:
Laura Magee (ESD) | laura.magee@esd.ny.gov | (716) 846-8239 | (800) 260-7313
ESD Press Office | PressOffice@esd.ny.gov | (800) 260-7313
Steve Ference (AIM) | sference@sunypoly.edu | 518-956-7319

CUS-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs

Today’s Announcement Builds On Progress Of Finger Lakes Forward, The Region’s Award-Winning Strategic Plan To Generate Robust Economic Growth And Community Development

ROCHESTER, NY and CARY, NCThe American Institute for Manufacturing Integrated Photonics (AIM Photonics), a public-private partnership advancing the nation’s photonics manufacturing capabilities, and Coventor®, Inc., a semiconductor process modeling software company, today announced Coventor as the newest member of AIM Photonics. Coventor will provide access to its unique, physics-driven 3D modeling technology to improve the performance and manufacturability of complex, integrated photonic designs. read more…

Tagged , , , , , , , , , , , , , , ,

Semiconductor Process Development: Finding a Faster Way to Profitability

By: Katherine Gambino, Strategic Accounts Manager

Intel Fab

Building a chip fabrication facility requires billions of dollars in investment for land, buildings, processing equipment, chemical and hazardous material safety, not to mention the deployment of hundreds of highly experienced process engineering and manufacturing personnel. Bringing up an advanced semiconductor process in any fab, new or established, is a several-hundred-million dollar effort, typically requiring two or more years of experimentation with process equipment and process recipes, led by engineers with years of process integration and chip manufacturing expertise.

read more…

Tagged , , , , , , , ,

BEOL Barricades: Navigating Future Yield, Reliability and Cost Challenges

By: David Fried, Ph.D., Chief Technology Officer, Semiconductor

Figure 1. M2-V1 process flow after (a) M2-L1 lithography, (b) M2-L2 litho, (c) V1 partial etch, (d) BLok open and (e) CuBS.

Coventor recently assembled an expert panel at IEDM 2016, to discuss changes to BEOL process technology that would be needed to continue dimensional scaling to 7 nm and lower. We asked our panelists questions such as: read more…

Tagged , , , , , , , , , , , , , , ,

Asymmetric variability issues could impact 7nm processes

By Luke Collins, Tech Design Forum

Tech Design Forum Logo

New variability issues highlighted by a massive process simulation exercise could make it more difficult than expected to achieve the performance advantages of emerging 7nm and 5nm processes.

Nano-electronics research centre imec has worked with Coventor to simulate the process variability of its 7nm BEOL fabrication processes using Coventor’s SEMulator3D virtual fabrication platform. The simulation of a full process window, looking at how multiple parameters of multiple processes interact, would have taken one million wafers to complete using conventional methods.

read the full article here

Tagged , , , , , , , , ,