• Skip to main content
  • LOG IN
  • REGISTER
Coventor_New_LogoCoventor_New_LogoCoventor_New_LogoCoventor_New_Logo
  • COMPANY
    • ABOUT
    • CAREERS
    • PRESS RELEASE
    • PRESS COVERAGE
    • EVENTS
  • PRODUCTS
    • SEMulator3D®
      Semiconductor Process Modeling
    • CoventorMP®
      MEMS Design Automation
      • CoventorWare®
      • MEMS+®
  • SOLUTIONS
    • SEMICONDUCTOR SOLUTIONS
    • MEMS SOLUTIONS
  • RESOURCES
    • CASE STUDIES
    • BLOG
    • VIDEOS
  • CONTACT
  • SUPPORT
Contact Us
✕
  • Home
  • Coventor Blog
  • IBM, Coventor present 22nm virtual fabrication success at SISPAD
Coventor provides a chapter for latest book on MEMS design: System-level Modeling of MEMS.
March 14, 2013
Will there ever be a “standard” MEMS process?
September 16, 2013

IBM, Coventor present 22nm virtual fabrication success at SISPAD

Published by Coventor at September 9, 2013
Categories
  • Coventor Blog
Tags
  • SEMulator3D

IBM and Coventor jointly presented a paper at the 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD).

The paper presents a technology development methodology that relies on 3D virtual fabrication using Coventor’s SEMulator 3D platform to rapidly improve yield by increasing tolerance to multilevel process variation. This methodology has been successfully implemented in the development and yield ramp of high–performance 22nm SOI CMOS technology. Based on virtual metrology, dedicated test site structures were designed and implemented, with electrical results corroborating virtual findings, validating the methodology. This 3D virtual fabrication technique was used to implement a delicate process change, and the same test site structures validated the improved process window yield.

DOWNLOAD the white paper: IBM, Coventor use virtual fabrication at 22nm

Share
Coventor
Coventor

Related posts

Figure 1 displays a single cell of a conventional DRAM that consists of 2 Word Lines (WLs), a Bit Line (BL) and 2 Storage Node Contacts (SNC) in Figure 1(a). There are 3 images in the figure. The Saddle Fin is produced during the WL etch step (prior to WL metal deposition) and is located below the cell wordline (Figure 1(b), right center inside a yellow dotted circle). The Saddle Fin structure can be seen in detail by making a vertical cut in the wordline direction (Fig.1(b), right). During device simulation, the Saddle Fin performance can be measured by virtually cropping a transistor and adding ports at the Gate, Source and Drain after an SNC Process (Fig.1(c), showing the gate, source and drain).
May 30, 2023

Improving DRAM Device Performance Through Saddle Fin Process Optimization


Read more - Improving DRAM Device Performance Through Saddle Fin Process Optimization
Figure 6 (left to right): Different profiles using pattern dependence for the antenna and sharp head shapes. a) Antenna shape with POR flow (b) Antenna profile with a gate CD of 26nm (c) Sharp head profile with a gate CD of 28nm (d) Sharp head profile with an etch.

Figure 6 (left to right): Different profiles using pattern dependence for the antenna and sharp head shapes. a) Antenna shape with POR flow (b) Antenna profile with a gate CD of 26nm (c) Sharp head profile with a gate CD of 28nm (d) Sharp head profile with an etch.

April 13, 2023

The Impact of Metal Gate Recess Profile on Transistor Resistance and Capacitance


Read more - The Impact of Metal Gate Recess Profile on Transistor Resistance and Capacitance
Figure 1a (left) displays the process of performing Physical Vapor Deposition (PVD), including Cu bombardment and filling of voids. Figure 1b (right) displays the process of performing Ion Beam Etch (IBE), including ion beam bombardment, mask shadowing and etch regions.

Fig 1a Physical Vapor Deposition (PVD); Fig 1b Ion Beam Etch (IBE)

March 22, 2023

A Deposition and Etch Technique to Lower Resistance of Semiconductor Metal Lines


Read more - A Deposition and Etch Technique to Lower Resistance of Semiconductor Metal Lines
Left to right: SEMulator3D virtual structures of NON, Low K and Airgap spacers for a DRAM cell, with highlighted SiO2, Polysilicon, Silicon, Si3N4, TIN and W layers

Fig. 1: (a) NON, (b) Low k and (c) Airgap spacer

February 28, 2023

A Comparative Evaluation of DRAM bit-line spacer integration schemes


Read more - A Comparative Evaluation of DRAM bit-line spacer integration schemes

Comments are closed.

Product Information

  • Product Offerings
  • Technical Support & Training
  • Licensing
  • System Requirements

Resources

  • Blog
  • Case Studies
  • Videos
  • 2018 MEMS Design Contest

Company

  • About
  • Press
  • Partners & Programs
  • Contact
© Copyright Coventor Inc., A Lam Research Company, All Rights Reserved
Privacy Policy • Terms of Use
Contact Us
  • LOG IN
  • REGISTER