• Skip to main content
  • LOG IN
  • REGISTER
Coventor_New_LogoCoventor_New_LogoCoventor_New_LogoCoventor_New_Logo
  • COMPANY
    • ABOUT
    • CAREERS
    • PRESS RELEASE
    • PRESS COVERAGE
    • EVENTS
  • PRODUCTS
    • SEMulator3D®
      Semiconductor Process Modeling
    • CoventorMP®
      MEMS Design Automation
      • CoventorWare®
      • MEMS+®
  • SOLUTIONS
    • SEMICONDUCTOR SOLUTIONS
    • MEMS SOLUTIONS
  • RESOURCES
    • CASE STUDIES
    • BLOG
    • VIDEOS
  • CONTACT
  • SUPPORT
Contact Us
✕
  • Home
  • Coventor Blog
  • MEMS+ 6.0 takes on MEMS/IoT integration challenges
SEMulator3D 5.0 – It’s ALMOST HERE!!!!
June 29, 2015
Will directed self-assembly pattern 14nm DRAM?
March 17, 2016

MEMS+ 6.0 takes on MEMS/IoT integration challenges

Published by Coventor at October 8, 2015
Categories
  • Coventor Blog
Tags
  • CoventorMP
  • CoventorWare
  • MEMS
  • MEMS+
Visualization of 3-axis MEMS gyro, courtesy of Murata Oy, simulated with MEMS+ model in MATLAB

Visualization of 3-axis MEMS gyro, courtesy of Murata Oy, simulated with MEMS+ model in MATLAB

Visualization of 3-axis MEMS gyro, courtesy of Murata Oy, simulated with MEMS+ model in MATLAB
Visualization of 3-axis MEMS gyro, courtesy of Murata Oy, simulated with MEMS+ model in MATLAB

We announced the release of the latest version of our MEMS+ design platform this week, MEMS+ 6.0. This release contains many new features and performance improvements that existing customers will appreciate as well as new capabilities that address key challenges of integrating MEMS with IoT devices. There’s far too much to talk about in one blog, so we will focus this one on why MEMS are critical to IoT and the key MEMS/IoT integration challenges MEMS+ 6.0 addresses. Subsequent blogs will expand on each of these challenges and our solutions.

First, let’s talk about the IoT, or Internet of Things. Unless you’ve been marooned on a remote island for a few years, you know that the IoT is the tech topic du jour, subject of much hype as well as growing reality. The IoT spans a wide range of technologies, including smart devices that interact with their environment, wireless technologies, internet infrastructure, big data, cloud infrastructure, software infrastructure, and software applications. It is widely acknowledged that low-cost sensors in general and MEMS in particular are a key enabler if not a defining characteristic of IoT.  A recent McKinsey report titled The Internet of Things: Mapping the Value Beyond the Hype states: “We define IoT as sensors and actuators connected by networks to computing systems. These systems can monitor or manage the health and actions of connected objects and machines. Connected sensors can also monitor the natural world, people, and animals.” The report goes on to say, under the topic of technology enablers: “Low-cost, low-power sensors are essential, and the price of MEMS (micro-electromechanical systems) sensors, which are used in smartphones, has dropped by 30 to 70 percent in the past five years.” The smart phones that most of us now keep with us 24/7 epitomize the first of many new IoT devices. They are packed with sensors, most notably MEMS motion sensors (accelerometers and gyroscopes) and MEMS microphones, and connect to the internet. Without MEMS, there would be no IoT or certainly less IoT.

For the now, say the next couple years, most IoT devices will be designed around available MEMS-based packaged parts with digital interfaces. The integration of the MEMS sensing elements with surrounding analog/mixed-signal (A/MS) electronics will be handled by the MEMS suppliers and the IoT designers only have to deal with sensor integration at the digital design and software/firmware levels. Looking ahead though, say three years and beyond, it’s a safe bet that market demands and competitive pressures will require IoT devices with lower cost, smaller size, lower power and higher performance. All those good things can only happen with a higher level of multi-technology integration at the package, wafer and die levels. There will be more MEMS devices on each die and more integration of MEMS and A/MS through wafer bonding. And there will be more integration of multiple technologies such as MEMS, A/MS, digital logic, memory and RF within a package through tried-and-true wire bonding and evolving through-silicon-via (TSV) technology. Developers of high-volume consumer IoT devices will lead the charge, but sooner or later the higher package-level integration demands will reach all market segments. For this increasing package-level integration to come to pass, IoT developers will require the sophisticated MEMS integration like the solutions that Coventor offers.

Here are the three key MEMS/IoT integration challenges that MEMS+ 6.0 addresses:

  • Provide a robust design flow for including MEMS in system designs in the MathWorks environment and circuit design in the Cadence environment;
  • Provide a platform for MEMS Process Design Kits (PDKs) to accelerate growth of the fabless/fab-lite business model for MEMS; and
  • Accurately predicting packaging effects on MEMS sensors

I’ll expand on each of these challenges and how MEMS+ 6.0 addresses them in future blogs.

Share
Coventor
Coventor

Related posts

Figure 1 displays a single cell of a conventional DRAM that consists of 2 Word Lines (WLs), a Bit Line (BL) and 2 Storage Node Contacts (SNC) in Figure 1(a). There are 3 images in the figure. The Saddle Fin is produced during the WL etch step (prior to WL metal deposition) and is located below the cell wordline (Figure 1(b), right center inside a yellow dotted circle). The Saddle Fin structure can be seen in detail by making a vertical cut in the wordline direction (Fig.1(b), right). During device simulation, the Saddle Fin performance can be measured by virtually cropping a transistor and adding ports at the Gate, Source and Drain after an SNC Process (Fig.1(c), showing the gate, source and drain).
May 30, 2023

Improving DRAM Device Performance Through Saddle Fin Process Optimization


Read more - Improving DRAM Device Performance Through Saddle Fin Process Optimization
Figure 6 (left to right): Different profiles using pattern dependence for the antenna and sharp head shapes. a) Antenna shape with POR flow (b) Antenna profile with a gate CD of 26nm (c) Sharp head profile with a gate CD of 28nm (d) Sharp head profile with an etch.

Figure 6 (left to right): Different profiles using pattern dependence for the antenna and sharp head shapes. a) Antenna shape with POR flow (b) Antenna profile with a gate CD of 26nm (c) Sharp head profile with a gate CD of 28nm (d) Sharp head profile with an etch.

April 13, 2023

The Impact of Metal Gate Recess Profile on Transistor Resistance and Capacitance


Read more - The Impact of Metal Gate Recess Profile on Transistor Resistance and Capacitance
Figure 1a (left) displays the process of performing Physical Vapor Deposition (PVD), including Cu bombardment and filling of voids. Figure 1b (right) displays the process of performing Ion Beam Etch (IBE), including ion beam bombardment, mask shadowing and etch regions.

Fig 1a Physical Vapor Deposition (PVD); Fig 1b Ion Beam Etch (IBE)

March 22, 2023

A Deposition and Etch Technique to Lower Resistance of Semiconductor Metal Lines


Read more - A Deposition and Etch Technique to Lower Resistance of Semiconductor Metal Lines
Left to right: SEMulator3D virtual structures of NON, Low K and Airgap spacers for a DRAM cell, with highlighted SiO2, Polysilicon, Silicon, Si3N4, TIN and W layers

Fig. 1: (a) NON, (b) Low k and (c) Airgap spacer

February 28, 2023

A Comparative Evaluation of DRAM bit-line spacer integration schemes


Read more - A Comparative Evaluation of DRAM bit-line spacer integration schemes

Comments are closed.

Product Information

  • Product Offerings
  • Technical Support & Training
  • Licensing
  • System Requirements

Resources

  • Blog
  • Case Studies
  • Videos
  • 2018 MEMS Design Contest

Company

  • About
  • Press
  • Partners & Programs
  • Contact
© Copyright Coventor Inc., A Lam Research Company, All Rights Reserved
Privacy Policy • Terms of Use
Contact Us
  • LOG IN
  • REGISTER