• Skip to main content
  • LOG IN
  • REGISTER
Coventor_New_LogoCoventor_New_LogoCoventor_New_LogoCoventor_New_Logo
  • COMPANY
    • ABOUT
    • CAREERS
    • PRESS RELEASE
    • PRESS COVERAGE
    • EVENTS
  • PRODUCTS
    • SEMulator3D®
      Semiconductor Process Modeling
    • CoventorMP®
      MEMS Design Automation
      • CoventorWare®
      • MEMS+®
  • SOLUTIONS
    • SEMICONDUCTOR SOLUTIONS
    • MEMS SOLUTIONS
  • RESOURCES
    • CASE STUDIES
    • BLOG
    • VIDEOS
  • CONTACT
  • SUPPORT
Contact Us
✕
  • Home
  • Coventor Blog
  • The Next Technology Frontier in MEMS Gyroscopes
Fig. 1 (a) DRAM Memory Cell, (b) GIDL in Cell Transistor, (c) Dielectric leakage between BLC and SNC, (d) Dielectric leakage at DRAM Capacitor
Identifying DRAM Failures Caused by Leakage Current and Parasitic Capacitance
January 29, 2020
Exploring the Impact of EUV Resist Thickness on Via Patterning Uniformity using a Litho/Etch Modeling Platform
March 24, 2020

The Next Technology Frontier in MEMS Gyroscopes

Published by Hideyuki Maekoba at February 20, 2020
Categories
  • Coventor Blog
Tags
  • CoventorMP
  • MEMS
  • MEMS gyroscope
  • MEMS Inertial Sensors

In MEMS technology development, it is always exciting to see the next technology frontier, the border of the known and the unknown. Talent and hard work (along with ingenuity) can move this frontier and enrich all of us. We respect the efforts of MEMS innovators, who have developed original and creative ideas by building upon past knowledge and wisdom and have integrated this knowledge across multiple disciplines. We believe that MEMS gyroscopes are poised to advance to this next technology frontier, addressing the challenges of temperature stability and wider bandwidth that limit existing gyroscope designs.

A MEMS gyroscope is a micro-machined device that can measure rotational motion (the angular rate of rotation or the angle of orientation). MEMS gyroscopes are small, inexpensive and have been incorporated in many consumer electronic devices (such as cell phones and drones). MEMS gyroscopes typically use a microfabricated suspended structure that measures the change in Coriolis forces (a force that acts upon an object as the mass experiences a rotation relative to its frame of reference).

Conventional Coriolis vibratory gyroscopes use amplitude modulation (AM), where intentionally mode-mismatched, closed-loop phase control and automatic gain control by synchronous detection are employed. AM gyroscopes have a trade-off between the sensitivity and bandwidth of the device. From a practical viewpoint, AM gyroscopes have quadrature error (out-of-phase error) and in-phase error. Dissipation through the substrate (anchor loss) and thermoelastic dissipation (TED) of the MEMS gyroscope can also degrade the quality factor (Q-factor) and performance of the device.

Frequency modulation (FM) gyroscopes are a promising new architecture in gyroscope design. These gyroscopes measure a frequency difference of the degenerated resonator. The measured frequency difference is proportional to the angular rate of motion. Moreover, a rate integrating gyroscope (RIG) using whole angle mode can measure rotation angle directly. The main challenge of these devices is asymmetry of frequency and Q-factor mismatch caused by fabrication imperfections. Coventor recently had the opportunity to model some RIG resonators developed at Tohoku University1. A CoventorMP® model of the resonators is shown below.

Dynamically Balanced Out-of-Plane Resonator for Roll/Pitch Rate Integrating Gyroscope.
Courtesy of Tohoku University, Professor Tanaka laboratory.
Dynamically Balanced Out-of-Plane Resonator for Roll/Pitch Rate Integrating Gyroscope.
Courtesy of Tohoku University, Professor Tanaka laboratory.

MEMS FM/RIG will bring us to the next technology frontier in gyroscope architecture. The upcoming IEEE INERTIAL conference will feature discussions about these devices. We look forward to seeing the next technology frontier in MEMS gyroscope and inertial sensor design at the IEEE INERTIAL conference and hope to meet you there.

Reference:

  1. Shihe Wang, Muhammad Salman Al Farisi, Takashiro Tsukamoto and Shuji Tanaka, “Dynamically Balanced Out-of-Plane Resonator for Roll/Pitch Rate Integrating Gyroscope,” in Proc. Sensor Symposium, Nov. 2019, 20am2-LN2-77.
Share
Hideyuki Maekoba
Hideyuki Maekoba
Hideyuki Maekoba, MS, is a Senior Application Engineer at Coventor, where he supports customers in using the CoventorMP MEMS design product. Mr. Maekoba is an expert in the design and modeling of MEMS devices, including RF MEMS, MEMS resonators and MEMS Inertial Sensors. He received his Master’s Degree in Physics from the University of Tsukuba in Tsukuba, Ibaraki, Japan.

Related posts

Figure 1 displays a single cell of a conventional DRAM that consists of 2 Word Lines (WLs), a Bit Line (BL) and 2 Storage Node Contacts (SNC) in Figure 1(a). There are 3 images in the figure. The Saddle Fin is produced during the WL etch step (prior to WL metal deposition) and is located below the cell wordline (Figure 1(b), right center inside a yellow dotted circle). The Saddle Fin structure can be seen in detail by making a vertical cut in the wordline direction (Fig.1(b), right). During device simulation, the Saddle Fin performance can be measured by virtually cropping a transistor and adding ports at the Gate, Source and Drain after an SNC Process (Fig.1(c), showing the gate, source and drain).
May 30, 2023

Improving DRAM Device Performance Through Saddle Fin Process Optimization


Read more - Improving DRAM Device Performance Through Saddle Fin Process Optimization
Figure 6 (left to right): Different profiles using pattern dependence for the antenna and sharp head shapes. a) Antenna shape with POR flow (b) Antenna profile with a gate CD of 26nm (c) Sharp head profile with a gate CD of 28nm (d) Sharp head profile with an etch.

Figure 6 (left to right): Different profiles using pattern dependence for the antenna and sharp head shapes. a) Antenna shape with POR flow (b) Antenna profile with a gate CD of 26nm (c) Sharp head profile with a gate CD of 28nm (d) Sharp head profile with an etch.

April 13, 2023

The Impact of Metal Gate Recess Profile on Transistor Resistance and Capacitance


Read more - The Impact of Metal Gate Recess Profile on Transistor Resistance and Capacitance
Figure 1a (left) displays the process of performing Physical Vapor Deposition (PVD), including Cu bombardment and filling of voids. Figure 1b (right) displays the process of performing Ion Beam Etch (IBE), including ion beam bombardment, mask shadowing and etch regions.

Fig 1a Physical Vapor Deposition (PVD); Fig 1b Ion Beam Etch (IBE)

March 22, 2023

A Deposition and Etch Technique to Lower Resistance of Semiconductor Metal Lines


Read more - A Deposition and Etch Technique to Lower Resistance of Semiconductor Metal Lines
Left to right: SEMulator3D virtual structures of NON, Low K and Airgap spacers for a DRAM cell, with highlighted SiO2, Polysilicon, Silicon, Si3N4, TIN and W layers

Fig. 1: (a) NON, (b) Low k and (c) Airgap spacer

February 28, 2023

A Comparative Evaluation of DRAM bit-line spacer integration schemes


Read more - A Comparative Evaluation of DRAM bit-line spacer integration schemes

Comments are closed.

Product Information

  • Product Offerings
  • Technical Support & Training
  • Licensing
  • System Requirements

Resources

  • Blog
  • Case Studies
  • Videos
  • 2018 MEMS Design Contest

Company

  • About
  • Press
  • Partners & Programs
  • Contact
© Copyright Coventor Inc., A Lam Research Company, All Rights Reserved
Privacy Policy • Terms of Use
Contact Us
  • LOG IN
  • REGISTER