• Skip to main content
  • LOG IN
  • REGISTER
Coventor_New_LogoCoventor_New_LogoCoventor_New_LogoCoventor_New_Logo
  • COMPANY
    • ABOUT
    • CAREERS
    • PRESS RELEASE
    • PRESS COVERAGE
    • EVENTS
  • PRODUCTS
    • SEMulator3D®
      Semiconductor Process Modeling
    • CoventorMP®
      MEMS Design Automation
      • CoventorWare®
      • MEMS+®
  • SOLUTIONS
    • SEMICONDUCTOR SOLUTIONS
    • MEMS SOLUTIONS
  • RESOURCES
    • CASE STUDIES
    • BLOG
    • VIDEOS
  • CONTACT
  • SUPPORT
Contact Us
✕
  • Home
  • Coventor Blog
  • Virtual fabrication is a more productive way to build integrated MEMS/CMOS systems than process simulation.
New Release of SEMulator3D® Now Available
March 7, 2011

Virtual fabrication is a more productive way to build integrated MEMS/CMOS systems than process simulation.

Published by Gerold Schropfer at October 27, 2009
Categories
  • Coventor Blog
Tags
  • CoventorMP
(left) SEM image and (right) SEMulator3D image of process steps in the Dalsa MEMS process.

(left) SEM image and (right) SEMulator3D image of process steps in the Dalsa MEMS process.

Dalsa Semiconductor and Coventor have published an article on the use of virtual fabrication for MEMS processing. Virtual fabrication process emulation backed up by experimental calibration is a more productive way to build integrated MEMS and CMOS systems than process simulation. It provides a link between fab and design, is a lower-cost and faster technique, and provides a unique method to understand and improve design and process interaction, and wafer control/inspection. It leverages the enormous knowledge and tooling that has been developed in CMOS semiconductor fabrication, and transfers that knowledge to the MEMS world.

(left) SEM image and (right) SEMulator3D image of process steps in the Dalsa MEMS process.
(left) SEM image and (right) SEMulator3D image of process steps in the Dalsa MEMS process.
Share
Gerold Schropfer
Gerold Schropfer
Dr. Gerold Schröpfer is Technical Director for Europe and for the MEMS business operations worldwide. For the last ten years, Gerold has been responsible for overseeing Coventor’s European MEMS and semiconductor business activities, including the management of R&D programs, industrial and academic partnerships, and external business relationships. Dr. Schröpfer has more than 20 years of relevant experience in MEMS and semiconductor design, process development and EDA product development. Prior to his current position at Coventor, Gerold carried out pioneering work in the design and development of inertial, tire pressure and magnetic sensors at Sensitec and SensoNor (Infineon). Dr. Schröpfer holds a PhD in engineering science from the University of Neuchâtel (Switzerland) and Franche-Comté (France), as well as a degree in physics from the University of Giessen (Germany).

Related posts

Figure 1 displays a single cell of a conventional DRAM that consists of 2 Word Lines (WLs), a Bit Line (BL) and 2 Storage Node Contacts (SNC) in Figure 1(a). There are 3 images in the figure. The Saddle Fin is produced during the WL etch step (prior to WL metal deposition) and is located below the cell wordline (Figure 1(b), right center inside a yellow dotted circle). The Saddle Fin structure can be seen in detail by making a vertical cut in the wordline direction (Fig.1(b), right). During device simulation, the Saddle Fin performance can be measured by virtually cropping a transistor and adding ports at the Gate, Source and Drain after an SNC Process (Fig.1(c), showing the gate, source and drain).
May 30, 2023

Improving DRAM Device Performance Through Saddle Fin Process Optimization


Read more - Improving DRAM Device Performance Through Saddle Fin Process Optimization
Figure 6 (left to right): Different profiles using pattern dependence for the antenna and sharp head shapes. a) Antenna shape with POR flow (b) Antenna profile with a gate CD of 26nm (c) Sharp head profile with a gate CD of 28nm (d) Sharp head profile with an etch.

Figure 6 (left to right): Different profiles using pattern dependence for the antenna and sharp head shapes. a) Antenna shape with POR flow (b) Antenna profile with a gate CD of 26nm (c) Sharp head profile with a gate CD of 28nm (d) Sharp head profile with an etch.

April 13, 2023

The Impact of Metal Gate Recess Profile on Transistor Resistance and Capacitance


Read more - The Impact of Metal Gate Recess Profile on Transistor Resistance and Capacitance
Figure 1a (left) displays the process of performing Physical Vapor Deposition (PVD), including Cu bombardment and filling of voids. Figure 1b (right) displays the process of performing Ion Beam Etch (IBE), including ion beam bombardment, mask shadowing and etch regions.

Fig 1a Physical Vapor Deposition (PVD); Fig 1b Ion Beam Etch (IBE)

March 22, 2023

A Deposition and Etch Technique to Lower Resistance of Semiconductor Metal Lines


Read more - A Deposition and Etch Technique to Lower Resistance of Semiconductor Metal Lines
Left to right: SEMulator3D virtual structures of NON, Low K and Airgap spacers for a DRAM cell, with highlighted SiO2, Polysilicon, Silicon, Si3N4, TIN and W layers

Fig. 1: (a) NON, (b) Low k and (c) Airgap spacer

February 28, 2023

A Comparative Evaluation of DRAM bit-line spacer integration schemes


Read more - A Comparative Evaluation of DRAM bit-line spacer integration schemes

Comments are closed.

Product Information

  • Product Offerings
  • Technical Support & Training
  • Licensing
  • System Requirements

Resources

  • Blog
  • Case Studies
  • Videos
  • 2018 MEMS Design Contest

Company

  • About
  • Press
  • Partners & Programs
  • Contact
© Copyright Coventor Inc., A Lam Research Company, All Rights Reserved
Privacy Policy • Terms of Use
Contact Us
  • LOG IN
  • REGISTER