silicon photonics

A Review of Silicon Photonics: Using Process Simulation to Design Silicon Photonics Devices

By: Michael Hargrove, SP&I Engineer

With the end of Moore’s Law rapidly approaching, or as some folks say – “already here”, new applications of older technologies are gaining attention. One specific area of interest is photonics. The National Center for Optics and Photonic Education defines photonics as the technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. It can also be defined as the science and application of light. Photonic applications use the photon in the same way that electronic applications use the electron. So, it’s natural to think of photonic applications in a similar manner as we think of electronic applications. The connection back to Moore’s Law is that we want to integrate photonic structures on a typical silicon wafer, utilizing Si-based technology that the industry has been continually shrinking and improving. This aspiration has led to the creation of silicon photonics technology, where photonics structures are built directly onto silicon wafers. read more…

Tagged

Silicon Photonics: Solving Process Variation and Manufacturing Challenges

By: Sandy Wen, Principal Engineer

As silicon photonics manufacturing gains momentum with additional foundry and 300mm offerings, process variation issues are coming to light. Variability in silicon processing affects the waveguide shape and can result in deviation in effective indices, propagation loss, and coupling efficiency from the intended design. In this article, we will highlight process variation issues that can occur in silicon photonics manufacturing and discuss techniques to mitigate these effects.

Figure 1. Example test photonic IC, with common elements such as waveguides, grating coupler, MZI, photodetector and fill pattern.

read more…

Tagged , , , , , , ,

AIM Photonics Welcomes Coventor as Newest Member

 

 

 

 

For Immediate Release: March 16, 2017

Contact:
Laura Magee (ESD) | laura.magee@esd.ny.gov | (716) 846-8239 | (800) 260-7313
ESD Press Office | PressOffice@esd.ny.gov | (800) 260-7313
Steve Ference (AIM) | sference@sunypoly.edu | 518-956-7319

CUS-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs

Today’s Announcement Builds On Progress Of Finger Lakes Forward, The Region’s Award-Winning Strategic Plan To Generate Robust Economic Growth And Community Development

ROCHESTER, NY and CARY, NCThe American Institute for Manufacturing Integrated Photonics (AIM Photonics), a public-private partnership advancing the nation’s photonics manufacturing capabilities, and Coventor®, Inc., a semiconductor process modeling software company, today announced Coventor as the newest member of AIM Photonics. Coventor will provide access to its unique, physics-driven 3D modeling technology to improve the performance and manufacturability of complex, integrated photonic designs. read more…

Tagged , , , , , , , , , , , , , , ,

Coventor in the News – Silicon Photonics

semimd_logo

Coventor in the News

Photonics in Silicon R&D Toward Tb/s

By Ed Korczynski, Sr. Technical Editor, Semiconductor Manufacturing & Design

imec_photonictransceiver_24mux-thumb

The client:server computing paradigm colloquially referred to as the “Cloud” results in a need for extremely efficient Cloud server hardware, and from first principles the world can save a lot of energy resources if servers run on photonics instead of electronics. Though the potential for cost-savings is well known, the challenge of developing cost-effective integrated photonics solutions remains. Today, discrete compound-semiconductor chips function as transmitters, multiplexers (MUX), and receivers of photons, while many global organizations pursue the vision of lower-cost integrated silicon (Si) photonics circuits. read more…

Tagged , , , , , , , , , ,

Achieving the Vision of Silicon Photonics Processing

By: Sandy Wen, MSEE, Semiconductor Process and Integration Engineer, Coventor

Silicon Photonics Test Die

Silicon Photonics Test Die

With the increasing need for faster data transfer rates, the transition from electrical to optical signaling in data processing is inevitable.   Copper cabling cannot keep up with the upcoming data center bandwidth requirements, for applications such as multimedia streaming and high performance computing.  One technology that could enable true optical communication is silicon photonics. read more…

Tagged , , , , , , , ,