Coventor Blog

Quick MEMS Development Through Virtual Fabrication

by Pawan Fangaria
SemiWiki

The design and manufacture of MEMS is very different and in many ways more complex process than even the most advanced ICs. MEMS involve multiple degrees of freedom (i.e. the device to exhibit different characteristics under different physical state, motion or mechanics), making fabrication of MEMS extremely complex; and hence the processes are highly customized and typically linked to particular design or device. The process flow and design parameters are highly sensitive to each other, thus requiring multiple build-and-test cycles and longer MEMS process learning cycles. And these days most of electronic devices or semiconductor designs involve MEMS integrated into them, necessitating a MEMS+IC design approach. For example, gyroscopes are being used in smartphones in big way to enhance motion detection and orientation. Given the cut-throat competition in the mobile market, with increasing feature sets and shrinking windows of opportunity, it’s critical that process learning cycles for MEMS development move from time-consuming build-and-test methods to more efficient methodologies to streamline the handoff from design to manufacturing.

The good news is that Coventor’s SEMulator3D tool (about which I had earlier talked in the context of Virtual Fabrication Platform for semiconductor design ICs) is providing an excellent platform for virtual modeling of MEMS as well. Physical data (such as capacitance) can be extracted from the model for quantitative analysis and process variation studied to quickly predict the exact model of interest before actual fabrication, thus reducing the learning cycle for MEMS.

read more…

Best wishes for the holidays from Coventor

From your friends and partners at Coventor around the world, we wish you best wishes for a safe and happy holiday season, and a prosperous New Year.

As always, we are standing by to help you get through any of your end-of-year design needs. Our support personnel are available through the coming week, with the exception of Wednesday December 25 and Wednesday January 1 when our worldwide offices are closed for the holidays.

As a reminder, here is contact information for Coventor resources

Web support:
System Requirements, Software Downloads, Customer Portal
www.coventor.com

Licensing information:
license@coventor.com

Email Technical Assistance:
EAST US: east.support@coventor.com
WEST US: west.support@coventor.com
Europe: europe.support@coventor.com
Asia: asia.support@coventor.com
University university.support@coventor.com
Other: support@coventor.com

General Sales:
sales@coventor.com

University Sales:
university_admin@coventor.com

We look forward to working with you in 2014 to reach new levels of MEMS and IC design success.

BEOL Patterning Comes to the Forefront

I just got back from the annual International Electron Devices Meeting (IEDM) in Washington, DC. As is customary, a great deal of attention was paid to Front End of Line (FEOL) transistor innovations such as FinFET, FDSOI, Graphene, Nanotubes, Nanowires, etc. However, some of the greatest complexity in semiconductor development and manufacturing these days is in the interconnect, or Back End of Line (BEOL). The BEOL contains some of the finest geometries in the technology, since die area scaling is usually limited by the wiring density. Because wires are being designed at such fine dimensions, their height has been increased to recoup the resistance penalty. This makes the dimensions even more challenging through high aspect ratios. Finally, the BEOL contains some of the most complex and unstable materials due to the desire to reduce capacitance (porous low-K dielectrics), the requirement to minimize thermal cycles (for FEOL stability), and the inherent reliability risks associated with the metals involved. I’ve been a transistor specialist for most of my career, but I have to admit… the BEOL has gotten incredibly difficult.
read more…

Industry experts debate next generation of process development challenges

At the 2013 edition of the IEDM conference held this month in Washington, DC, some of the brightest minds in the design and manufacture of semiconductors gathered to discuss trends and challenges in the IC industry. One particular session, hosted by Coventor, assembled 5 experts on leading edge process development from some of the biggest chip players in the business: IBM, GlobalFoundries, Samsung, ST Microelectronics and renowned research organization IMEC.

Coventor CTO David Fried leads a panel of industry experts on a discussion of how to address challenges to continued IC scaling

The consensus of this elite group was not surprising: there is no shortage of new and unprecedented challenges standing in the way of continued scaling of IC technology. Each panelist offered their own opinion on what the biggest challenge is, and they ran the gamut of tough tasks.

read more…

Q&A: MEMS Begin to Enter the Semiconductor Design Mainstream

Cadence.com
By Richard Goering on December 11, 2013

Micro-electrical mechanical systems (MEMS) have been a niche technology for many years, but a new generation of MEMS ICs is emerging, according to Mike Jamiolkowski, CEO of Cadence partner and MEMS tool provider Coventor. Barriers to the use of MEMS technology, such as the need for PhD-level experts and non-reusable foundry processes, are starting to ease.

In this interview Jamiolkowski talks about new trends in the MEMS market, discusses his company’s MEMS+ tools and how they work with the Cadence Virtuoso platform, and notes a new MEMS+ capability to output reduced order models in the Verilog-A language.
read more…

Toward Smarter Design of Smart Systems

Posted by: Gerold Schröpfer, Director of European Operations and Foundry Partner Program

Without MEMS today’s smart phones wouldn’t be called “smart”. Be it motion sensing with accelerometers and gyroscopes, noise cancelling with multiple microphones, multi-band radios with tunable RF MEMS capacitors, MEMS are one of the key enablers for completely new or substantially improved functionaloties. This is true not only for smart phones but for many other intelligent devices, in many different application domains. In Europe, we call them “Smart Systems”.

While smart phones and smart systems are becoming coming common place, current industry practices for designing these complex systems are not so smart. According to Salvatore Rinaudo, Industrial and Multi-Segment Sector CAD R&D Director at STMicroelectronics, the lack of a structured design methodology is ‘…the major obstacle to the rapid expansion of smart systems applications.’ Smart system developers use separate design tools for different parts of the system, and most of them do not take the overall system integration into account. Rinaudo made this statement in 2011, but it’s just as relevant today. To address this challenge, key European stake holders have joined forces in two collaborative R&D consortia. One of them is SMAC, which stands for ‘SMArt systems Co-design’, combining expertise from smart systems manufacturers, EDA vendors and academic institutions under the leadership of ST. The other is PARSIMO and focuses on partitioning and modeling of Systems in Package (SIP). read more…