• Skip to main content
  • LOG IN
  • REGISTER
Coventor_New_LogoCoventor_New_LogoCoventor_New_LogoCoventor_New_Logo
  • COMPANY
    • ABOUT
    • CAREERS
    • PRESS RELEASE
    • PRESS COVERAGE
    • EVENTS
  • PRODUCTS
    • SEMulator3D®
      Semiconductor Process Modeling
    • CoventorMP®
      MEMS Design Automation
      • CoventorWare®
      • MEMS+®
  • SOLUTIONS
    • SEMICONDUCTOR SOLUTIONS
    • MEMS SOLUTIONS
  • RESOURCES
    • CASE STUDIES
    • BLOG
    • VIDEOS
  • CONTACT
  • SUPPORT
Contact Us
✕
  • Home
  • Coventor Blog
  • Coventor Makes History (Museum)
a. Fully aligned Via with Cu recess approach - Gayle Murdoch, b. STT-RAM - Davide Crotti, c. N10 Supernova2 process - Matt Gallagher
IMEC Partner Technical Week Review
June 14, 2016
3D DTCO Process in SEMulator3D
Design Process Technology Co-Optimization for Manufacturability
September 21, 2016

Coventor Makes History (Museum)

Published by Coventor at June 23, 2016
Categories
  • Coventor Blog
Tags
  • SEMulator3D
Coventor-DAC2016-Art-piece-with-award

53rd Design Automation Conference: Coventor wins First Place Technology Art Award

Coventor-DAC2016-Art-piece-with-award
53rd Design Automation Conference: Coventor wins First Place Technology Art Award

Organizers of the 53rd Design Automation Conference (DAC) hosted an art show to highlight the creativity and artistry that goes into much of the work in the electronics industry.  Coventor was honored with the grand prize for our 3D sculpture, which modeled 14nm FinFET Technology.

Here’s the background on how we came to make this piece. Of course we used SEMulator3D to generate the data. Normally this is rendered on a computer screen but for this we used a state-of-the-art 3D printer from Stratasys. We’ve printed 3D models in the past, but we knew we’d need to go significantly beyond our prior experience to make a bold statement. We were assisted in this effort by our friends at GrabCad, a digital manufacturing hub that helps designers and engineers build great products faster.

With SEMulator3D we created a large model of 14nm FinFET transistors, across a wide area of SRAM design, at high resolution, integrated from starting wafer through Metal 3, with some artistic cut-outs for visibility.   The resulting model was beautiful and reinforced all the key advanced capabilities of SEMulator3D, including MultiEtch, Visibility-Limited Deposition, Selective Epitaxy and many others.

Once the model was created we then exported it using the new standard voxel-data import-export format.  We worked with a team from GrabCad to print the piece in full color. They were able to parse our model input into their printing format.  The tricky part was that their ink-jet resolution is nearly 10x the resolution of the model data in the size we wanted to print, so with only three colors in the printer, we had to dither the ink to get the 27 colors needed for the final output.

Once printed – the piece was packaged and shipped to Austin where it was on display for three days at DAC. The sculpture generated a great deal of buzz and excitement, which culminated at the awards ceremony on Wednesday. All the pieces in the Art Show were judged in several categories such as: best visualization, best silicon photo, most inspiring, most insightful and most artistic. Coventor won the GRAND PRIZE, which went to the piece that stood out in all categories. As the winner, our 14nm FinFET 3D Sculpture will now be moved to the Computer History Museum in Mountain View, CA where it will be on display for one year.

Congratulations to everyone who had a hand in the creation of this piece and to the organizers of DAC for hosting the Art Show, with particular thanks to our colleagues at GrabCad. We’re happy to have been part of this and honored to now be part of the Computer History Museum.

Share
Coventor
Coventor

Related posts

Figure 1 displays a single cell of a conventional DRAM that consists of 2 Word Lines (WLs), a Bit Line (BL) and 2 Storage Node Contacts (SNC) in Figure 1(a). There are 3 images in the figure. The Saddle Fin is produced during the WL etch step (prior to WL metal deposition) and is located below the cell wordline (Figure 1(b), right center inside a yellow dotted circle). The Saddle Fin structure can be seen in detail by making a vertical cut in the wordline direction (Fig.1(b), right). During device simulation, the Saddle Fin performance can be measured by virtually cropping a transistor and adding ports at the Gate, Source and Drain after an SNC Process (Fig.1(c), showing the gate, source and drain).
May 30, 2023

Improving DRAM Device Performance Through Saddle Fin Process Optimization


Read more - Improving DRAM Device Performance Through Saddle Fin Process Optimization
Figure 6 (left to right): Different profiles using pattern dependence for the antenna and sharp head shapes. a) Antenna shape with POR flow (b) Antenna profile with a gate CD of 26nm (c) Sharp head profile with a gate CD of 28nm (d) Sharp head profile with an etch.

Figure 6 (left to right): Different profiles using pattern dependence for the antenna and sharp head shapes. a) Antenna shape with POR flow (b) Antenna profile with a gate CD of 26nm (c) Sharp head profile with a gate CD of 28nm (d) Sharp head profile with an etch.

April 13, 2023

The Impact of Metal Gate Recess Profile on Transistor Resistance and Capacitance


Read more - The Impact of Metal Gate Recess Profile on Transistor Resistance and Capacitance
Figure 1a (left) displays the process of performing Physical Vapor Deposition (PVD), including Cu bombardment and filling of voids. Figure 1b (right) displays the process of performing Ion Beam Etch (IBE), including ion beam bombardment, mask shadowing and etch regions.

Fig 1a Physical Vapor Deposition (PVD); Fig 1b Ion Beam Etch (IBE)

March 22, 2023

A Deposition and Etch Technique to Lower Resistance of Semiconductor Metal Lines


Read more - A Deposition and Etch Technique to Lower Resistance of Semiconductor Metal Lines
Left to right: SEMulator3D virtual structures of NON, Low K and Airgap spacers for a DRAM cell, with highlighted SiO2, Polysilicon, Silicon, Si3N4, TIN and W layers

Fig. 1: (a) NON, (b) Low k and (c) Airgap spacer

February 28, 2023

A Comparative Evaluation of DRAM bit-line spacer integration schemes


Read more - A Comparative Evaluation of DRAM bit-line spacer integration schemes

Comments are closed.

Product Information

  • Product Offerings
  • Technical Support & Training
  • Licensing
  • System Requirements

Resources

  • Blog
  • Case Studies
  • Videos
  • 2018 MEMS Design Contest

Company

  • About
  • Press
  • Partners & Programs
  • Contact
© Copyright Coventor Inc., A Lam Research Company, All Rights Reserved
Privacy Policy • Terms of Use
Contact Us
  • LOG IN
  • REGISTER