• Skip to main content
  • LOG IN
  • REGISTER
Coventor_New_LogoCoventor_New_LogoCoventor_New_LogoCoventor_New_Logo
  • COMPANY
    • ABOUT
    • CAREERS
    • PRESS RELEASE
    • PRESS COVERAGE
    • EVENTS
  • PRODUCTS
    • SEMulator3D®
      Semiconductor Process Modeling
    • CoventorMP®
      MEMS Design Automation
      • CoventorWare®
      • MEMS+®
  • SOLUTIONS
    • SEMICONDUCTOR SOLUTIONS
    • MEMS SOLUTIONS
  • RESOURCES
    • CASE STUDIES
    • BLOG
    • VIDEOS
  • CONTACT
  • SUPPORT
Contact Us
✕
  • Home
  • Coventor Blog
  • Coventor’s Stephen Breit Highlighted as Featured Speaker at MEPTEC MEMS Symposium
The Value of Time
May 9, 2012
MEMS integration: A Matter of Perspective
May 24, 2012

Coventor’s Stephen Breit Highlighted as Featured Speaker at MEPTEC MEMS Symposium

Published by Coventor at May 23, 2012
Categories
  • Coventor Blog
Tags
  • CoventorMP

Coventor’s Stephen Breit will be one of the featured speakers at the upcoming MEPTEC MEMS Technology Symposium.  Dr. Breit, who is V.P. of Engineering at Coventor,  will speak about realizing the full potential of MEMS design automation software.  It’s a topic he knows quite a bit about as he has headed up the research and development of Coventor’s market-leading MEMS design software solutions for the past 15 years. Steve will draw upon that experience to make the case for engineers to use increased software-based automation and simulation tools in order to reduce time-consuming and costly build-and-test cycles.

The tenth annual MEMS Technology Symposium is being held in San Jose, California on May 23, 2012.  To celebrate a decade of success, this year’s discussions will be focused on how to jumpstart the next decade with a bold prediction: to grow the MEMS market to $1 trillion USD. This year’s speakers have been carefully selected based on how well they support this idea and embrace the possibility of increasing the MEMS market over the next ten years

MEPTEC is a is a trade association that has provided a forum for semiconductor packaging and test professionals to learn and exchange ideas that relate to packaging, assembly and test for the past 30 years.  To register for the event click here.

Share
Coventor
Coventor

Related posts

Figure 1 displays a single cell of a conventional DRAM that consists of 2 Word Lines (WLs), a Bit Line (BL) and 2 Storage Node Contacts (SNC) in Figure 1(a). There are 3 images in the figure. The Saddle Fin is produced during the WL etch step (prior to WL metal deposition) and is located below the cell wordline (Figure 1(b), right center inside a yellow dotted circle). The Saddle Fin structure can be seen in detail by making a vertical cut in the wordline direction (Fig.1(b), right). During device simulation, the Saddle Fin performance can be measured by virtually cropping a transistor and adding ports at the Gate, Source and Drain after an SNC Process (Fig.1(c), showing the gate, source and drain).
May 30, 2023

Improving DRAM Device Performance Through Saddle Fin Process Optimization


Read more - Improving DRAM Device Performance Through Saddle Fin Process Optimization
Figure 6 (left to right): Different profiles using pattern dependence for the antenna and sharp head shapes. a) Antenna shape with POR flow (b) Antenna profile with a gate CD of 26nm (c) Sharp head profile with a gate CD of 28nm (d) Sharp head profile with an etch.

Figure 6 (left to right): Different profiles using pattern dependence for the antenna and sharp head shapes. a) Antenna shape with POR flow (b) Antenna profile with a gate CD of 26nm (c) Sharp head profile with a gate CD of 28nm (d) Sharp head profile with an etch.

April 13, 2023

The Impact of Metal Gate Recess Profile on Transistor Resistance and Capacitance


Read more - The Impact of Metal Gate Recess Profile on Transistor Resistance and Capacitance
Figure 1a (left) displays the process of performing Physical Vapor Deposition (PVD), including Cu bombardment and filling of voids. Figure 1b (right) displays the process of performing Ion Beam Etch (IBE), including ion beam bombardment, mask shadowing and etch regions.

Fig 1a Physical Vapor Deposition (PVD); Fig 1b Ion Beam Etch (IBE)

March 22, 2023

A Deposition and Etch Technique to Lower Resistance of Semiconductor Metal Lines


Read more - A Deposition and Etch Technique to Lower Resistance of Semiconductor Metal Lines
Left to right: SEMulator3D virtual structures of NON, Low K and Airgap spacers for a DRAM cell, with highlighted SiO2, Polysilicon, Silicon, Si3N4, TIN and W layers

Fig. 1: (a) NON, (b) Low k and (c) Airgap spacer

February 28, 2023

A Comparative Evaluation of DRAM bit-line spacer integration schemes


Read more - A Comparative Evaluation of DRAM bit-line spacer integration schemes

Comments are closed.

Product Information

  • Product Offerings
  • Technical Support & Training
  • Licensing
  • System Requirements

Resources

  • Blog
  • Case Studies
  • Videos
  • 2018 MEMS Design Contest

Company

  • About
  • Press
  • Partners & Programs
  • Contact
© Copyright Coventor Inc., A Lam Research Company, All Rights Reserved
Privacy Policy • Terms of Use
Contact Us
  • LOG IN
  • REGISTER